## Thermodynamics

#### Or, "will it happen?"

#### Questions to answer...

- 1. What is thermodynamics all about?
- 2. What are "spontaneous" reactions?
- 3. What does enthalpy have to do with predicting spontaneity?
- 4. What is entropy? What does it have to do with spontaneity?
- 5. How can I predict whether a reaction will be spontaneous?

#### Thermodynamics Deals with two fundamental ideas 1. energy (enthalpy, $\Delta$ H) 2. "distribution of microstates" (entropy, S) Tells us which reactions should and shouldn't happen by themselves Reaction <u>spontaneity</u>

#### Questions to answer...

1. What is thermodynamics all about?

**Spontaneous Reactions** "Thermodynamically favored" Occur by themselves once the conditions are right Examples phase change at the right T gravity effects rusting of Fe

Nonspontaneous changes must be forced Example electrolysis of H<sub>2</sub>O  $2H_2O_{(I)} \rightarrow 2H_{2(q)} + O_{2(q)}$ some other spontaneous change must occur first electricity will flow when the circuit is completed



#### Which is the "spontaneous" change?

Can the other be forced? How?

**Everything that** happens can be traced back to some spontaneous (thermodynamically favored) change....

#### Questions to answer...

What is thermodynamics all about?
 What are "spontaneous" reactions?

When is a reaction spontaneous?

"thermodynamically favored"

#### When is a reaction spontaneous?

- When attractions are formed, energy is RELEASED from the system
- Exothermic reactions
- $PE(system) \Rightarrow KE(surroundings)$

 More energy is released when new bonds in products are formed than it took to break the bonds in the reactants

# When is a reaction spontaneous?

#### Questions to answer...

- 1. What is thermodynamics all about?
- 2. What are "spontaneous" reactions?
- 3. What does enthalpy have to do with predicting spontaneity?

#### But...

Spontaneous reactions can be either exothermic or endothermic! Therefore, an additional thermodynamic parameter is required to predict if a reaction is or is not spontaneous. ENTROPY

# What is **Entropy**?

 Entropy (S) describes the amount of "distribution of microstates" in a system
 The more centralized or

accumulated in one spot the matter is, the fewer the microstates, the *lower* the entropy

The more distributed or spread around, the higher the entropy

# What are "distributions of microstates"?

How many different ways can you distribute 4 objects among two containers?

#### Imagine four objects spread among two locations



# Which process or "direction" tends to be the spontaneous change?

a stone wall crumbles over time, or a loose pile of stones turns into a wall?

ice melts at room temperature, or water freezes at room temperature?

What is the entropy change here? Increasing? Decreasing? Another principal driving force in a reaction is an increase in entropy

The second law of thermodynamics states that spontaneous processes always proceed in such a way that the entropy of the universe increases. The third law of thermodynamics states that the entropy of a pure crystal at 0 K is zero. This simply means all "real world" substances have a positive S value S is measured in J/K S is never a negative number, but  $\Delta S$  can be!

Any event that is accompanied by an increase in entropy  $\Delta S$  is positive tends to occur spontaneously

## Thermodynamics

#### Or, "will it happen?"

#### Thermodynamics Deals with two fundamental ideas 1. energy (enthalpy, $\Delta$ H) 2. "distribution of microstates" (entropy, S) Tells us which reactions should and shouldn't happen by themselves Reaction <u>spontaneity</u>

#### Questions to answer...

- 1. What is thermodynamics all about?
- 2. What are "spontaneous" reactions?
- 3. What does enthalpy have to do with predicting spontaneity?
- 4. What is entropy? What does it have to do with spontaneity?

#### When is $\Delta$ S positive? 1. an increase in freedom of movement = an increase in entropy solid to liquid liquid to gas dissolving a solid into a liquid fewer molecules (particles) to more molecules

#### When is $\Delta$ S positive? 1. an increase in freedom of movement = an increase in entropy solid to liquid liquid to gas dissolving a solid into a liquid

fewer molecules (particles) to more molecules

2. An increase in temperature means an increase in Entropy



What would a graph look like if we plot temperature on the x axis and entropy on the y axis?

(assume the origin is 0,0)



Temperature (K)

S° (J/K•mol)

#### A few general rules...

- 1. If the reaction produces more moles of gas than it consumes, entropy increases (+  $\Delta$ S)
- 2. If there are more particles on the product side of the equation, entropy increases (+  $\Delta$ S)
- 3. If the reaction involves only liquids and solids, ∆S may be (+) or (-), but it will be small





All substances are gases = no effect 8 molecules to 4 = less freedom of movement (less distribution)  $\Delta$  S is negative  $\Rightarrow$  Entropy decreases

# Decide if $\triangle$ S is positive...

- 2 NO<sub>2(g)</sub> → N<sub>2</sub>O<sub>4(g)</sub> ■ gas to gas = no effect
- two molecules to one = less freedom of movement
- Iess distribution of energy/microstates
   ∆ S is negative ⇒ Entropy decreases

- $2 \text{ SO}_{2(g)} + \text{ O}_{2(g)} \rightarrow 2 \text{ SO}_{3(g)}$ • gas to gas = no effect
- 3 molecules to 2 = lower freedom of movement
- Less distribution of energy/microstates
- $\Delta$  S is negative  $\Rightarrow$  Entropy decreases

 $2 \text{ NaHCO}_{3(s)} \rightarrow \text{ Na}_2 \text{CO}_{3(s)} + \text{ CO}_{2(q)} + \text{ H}_2 \text{O}_{(q)}$ solid to solid and gases 2 molecules to 3 more freedom of movement More distribution of energy / microstates  $\Delta$  S is positive

 $2H_2O_{(I)} \rightarrow 2H_{2(g)} + O_{2(g)}$ liquid to gas 2 molecules to 3 more freedom of movement  $\blacksquare \Delta S$  is positive Even so, this reaction is nonspontaneous - Why?

#### How are $\Delta$ H and $\Delta$ S related?

2H<sub>2</sub>O<sub>(I)</sub> + E → 2H<sub>2(g)</sub> + O<sub>2(g)</sub>
The reaction is *endothermic*Δ S is positive, but the reaction is nonspontaneous, because ΔH is also positive

# **"Will the reaction happen spontaneously?"**



Next up, we will look at the quantitative relationship between  $\Lambda$  H and  $\Lambda$  S

# Free Energy "G"

- The Free Energy of a system is the energy that is available (free) to do useful work
- A change can only be spontaneous if it is accompanied by a <u>decrease</u> in free energy
  - ∆G is negative

## Gibbs equation

# G = H - TS H is unknown; but it is ∆G that is important anyway...

# $\Delta G = \Delta H - T\Delta S$

When is a reaction spontaneous? •When  $\Delta G$  is negative That is, when the result of ( $\Delta H - T\Delta S$ ) is less than zero

#### When is $\Delta G$ negative? $\Delta H \Delta S \Delta G = \Delta H - T\Delta S$ no matter what T is + ╋ no matter what T is - only if $T\Delta S > \Delta H$ (high T) + + - only if $\Delta H > T \Delta S$ (low T)

#### Questions to answer...

- 1. What is thermodynamics all about?
- 2. What are "spontaneous" reactions?
- 3. What does enthalpy have to do with predicting spontaneity?
- 4. What is entropy? What does it have to do with spontaneity?
- 5. How can I predict whether a reaction will be spontaneous?

## Thermodynamics

#### Or, "will it happen?"